Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Antiviral Res ; 200: 105294, 2022 04.
Article in English | MEDLINE | ID: covidwho-1757111

ABSTRACT

Despite recent advancements in the development of vaccines and monoclonal antibody therapies for Ebola virus disease, treatment options remain limited. Moreover, management and containment of Ebola virus outbreaks is often hindered by the remote nature of the locations in which the outbreaks originate. Small-molecule compounds offer the advantage of being relatively cheap and easy to produce, transport and store, making them an interesting modality for the development of novel therapeutics against Ebola virus disease. Furthermore, the repurposing of small-molecule compounds, previously developed for alternative applications, can aid in reducing the time needed to bring potential therapeutics from bench to bedside. For this purpose, the Medicines for Malaria Venture provides collections of previously developed small-molecule compounds for screening against other infectious diseases. In this study, we used biologically contained Ebola virus to screen over 4,200 small-molecule drugs and drug-like compounds provided by the Medicines for Malaria Venture (i.e., the Pandemic Response Box and the COVID Box) and the Centre for Drug Design and Discovery (CD3, KU Leuven, Belgium). In addition to confirming known Ebola virus inhibitors, illustrating the validity of our screening assays, we identified eight novel selective Ebola virus inhibitors. Although the inhibitory potential of these compounds remains to be validated in vivo, they represent interesting compounds for the study of potential interventions against Ebola virus disease and might serve as a basis for the development of new therapeutics.


Subject(s)
COVID-19 , Ebolavirus , Hemorrhagic Fever, Ebola , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA Viruses , Humans
2.
Front Immunol ; 12: 788235, 2021.
Article in English | MEDLINE | ID: covidwho-1650090

ABSTRACT

The ongoing COVID-19 pandemic has resulted in global effects on human health, economic stability, and social norms. The emergence of viral variants raises concerns about the efficacy of existing vaccines and highlights the continued need for the development of efficient, fast-acting, and cost-effective vaccines. Here, we demonstrate the immunogenicity and protective efficacy of two vesicular stomatitis virus (VSV)-based vaccines encoding the SARS-CoV-2 spike protein either alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV). Intranasally vaccinated hamsters showed an early CD8+ T cell response in the lungs and a greater antigen-specific IgG response, while intramuscularly vaccinated hamsters had an early CD4+ T cell and NK cell response. Intranasal vaccination resulted in protection within 10 days with hamsters not showing clinical signs of pneumonia when challenged with three different SARS-CoV-2 variants. This data demonstrates that VSV-based vaccines are viable single-dose, fast-acting vaccine candidates that are protective from COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Ebolavirus/immunology , Pandemics/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vesicular stomatitis Indiana virus/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Ebolavirus/genetics , Female , Humans , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Plasmids , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Treatment Outcome , Vero Cells , Vesicular stomatitis Indiana virus/genetics
3.
Front Public Health ; 9: 802428, 2021.
Article in English | MEDLINE | ID: covidwho-1636471

ABSTRACT

Introduction: Evidence on authorship trends of health research conducted about or in Africa shows that there is a lack of local researchers in the first and last authorship positions, with high income country collaborations taking up these positions. The differences in authorship calls into question power imbalances in global health research and who benefits from the production of new discoveries and innovations. Health studies may further go on to inform policy and clinical practice within the region having an impact on public health. This paper aims to compare the differences in authorship between COVID-19 and relevant infectious diseases in Africa. Materials and Methods: We will conduct a bibliometric analysis comparing authorship for COVID-19 research during a public health emergency with authorship for four other infectious diseases of relevance to Africa namely: Ebola, Zika Virus (ZIKV), Tuberculosis (TB) and Influenza. Our scoping review will follow the framework developed by Arksey and O'Malley and reviewed by Levac et al. We will search MEDLINE (Ovid), African Index Medicus (AIM), Eastern Mediterranean Region (IMEMR) Index Medicus, Embase (Ovid), and Web of Science (Clarivate). We will compare the different trends of disease research between the selected diseases. This study is registered with OSF registries and is licensed with the Academic Free License version 3.0. The open science registration number is 10.17605/OSF.IO/5ZPGN.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Africa , Bibliometrics , Delivery of Health Care , Humans , Review Literature as Topic , SARS-CoV-2
4.
Eur J Med Chem ; 226: 113862, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1433178

ABSTRACT

We report here the synthesis, purification, and characterization of mono- and di-fatty acyl conjugates of remdesivir (RDV) and their in vitro antiviral activity against SAR-CoV-2, an Ebola virus transcription- and replication-competent virus-like particle (trVLP) system, and infectious Ebola virus. The most potent monofatty acyl conjugate was 4b, containing a 4-oxatetradecanolyl at the 3' position. Monofatty acyl conjugates, 3'-O-tetradecanoyl (4a) (IC50(VeroE6) = 2.3 µM; IC50(Calu3) = 0.24 µM), 3'-O-4-oxatetradodecanoyl (4b) (IC50(VeroE6) = 2.0 µM; IC50(Calu3) = 0.18 µM), and 3'-O-(12-ethylthiododecanoyl) (4e) (IC50(VeroE6) = 2.4 µM; IC50(Calu3) = 0.25 µM) derivatives exhibited less activity than RDV (IC50(VeroE6) = 0.85 µM; IC50(Calu3) = 0.06 µM) in both VeroE6 and Calu3 cells. Difatty acylation led to a significant reduction in the antiviral activity of RDV (as shown in conjugates 5a and 5b) against SARS-CoV-2 when compared with monofatty acylation (3a-e and 4a-e). About 77.9% of 4c remained intact after 4 h incubation with human plasma while only 47% of parent RDV was observed at the 2 h time point. The results clearly indicate the effectiveness of fatty acylation to improve the half-life of RDV. The antiviral activities of a number of monofatty acyl conjugates of RDV, such as 3b, 3e, and 4b, were comparable with RDV against the Ebola trVLP system. Meanwhile, the corresponding physical mixtures of RDV and fatty acids 6a and 6b showed 1.6 to 2.2 times less antiviral activity than the corresponding conjugates, 4a and 4c, respectively, against SARS-CoV-2 in VeroE6 cells. A significant reduction in viral RNA synthesis was observed for selected compounds 3a and 4b consistent with the IC50 results. These studies indicate the potential of these compounds as long-acting antiviral agents or prodrugs of RDV.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , COVID-19/virology , Ebolavirus/drug effects , Fatty Acids/chemistry , SARS-CoV-2/drug effects , Adenosine Monophosphate/chemical synthesis , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/chemical synthesis , Alanine/chemistry , Alanine/pharmacology , Antiviral Agents/chemistry , Humans , SARS-CoV-2/isolation & purification
5.
Comput Struct Biotechnol J ; 19: 4684-4701, 2021.
Article in English | MEDLINE | ID: covidwho-1363952

ABSTRACT

Safer and more-effective drugs are urgently needed to counter infections with the highly pathogenic SARS-CoV-2, cause of the COVID-19 pandemic. Identification of efficient inhibitors to treat and prevent SARS-CoV-2 infection is a predominant focus. Encouragingly, using X-ray crystal structures of therapeutically relevant drug targets (PLpro, Mpro, RdRp, and S glycoprotein) offers a valuable direction for anti-SARS-CoV-2 drug discovery and lead optimization through direct visualization of interactions. Computational analyses based primarily on MMPBSA calculations have also been proposed for assessing the binding stability of biomolecular structures involving the ligand and receptor. In this study, we focused on state-of-the-art X-ray co-crystal structures of the abovementioned targets complexed with newly identified small-molecule inhibitors (natural products, FDA-approved drugs, candidate drugs, and their analogues) with the assistance of computational analyses to support the precision design and screening of anti-SARS-CoV-2 drugs.

6.
Microorganisms ; 8(10)2020 Sep 25.
Article in English | MEDLINE | ID: covidwho-1302376

ABSTRACT

Zaire Ebola virus (EBOV) is a member of the Filoviridae family of negative sense, single-stranded RNA viruses. EBOV infection causes Ebola virus disease (EVD), characterized by coagulopathy, lymphopenia, and multi-organ failure, which can culminate in death. In 2019, the FDA approved the first vaccine against EBOV, a recombinant live-attenuated viral vector wherein the G protein of vesicular stomatitis virus is replaced with the glycoprotein (GP) of EBOV (rVSV-EBOV-GP, Ervebo® by Merck). This vaccine demonstrates high efficacy in nonhuman primates by providing prophylactic, rapid, and post-exposure protection. In humans, rVSV-EBOV-GP demonstrated 100% protection in several phase III clinical trials in over 10,000 individuals during the 2013-2016 West Africa epidemic. As of 2020, over 218,000 doses of rVSV-EBOV-GP have been administered to individuals with high risk of EBOV exposure. Despite licensure and robust preclinical studies, the mechanisms of rVSV-EBOV-GP-mediated protection are not fully understood. Such knowledge is crucial for understanding vaccine-mediated correlates of protection from EVD and to aid the further design and development of therapeutics against filoviruses. Here, we summarize the current literature regarding the host response to vaccination and EBOV exposure, and evidence regarding innate and adaptive immune mechanisms involved in rVSV-EBOV-GP-mediated protection, with a focus on the host transcriptional response. Current data strongly suggest a protective synergy between rapid innate and humoral immunity.

7.
Vaccines (Basel) ; 9(6)2021 Jun 10.
Article in English | MEDLINE | ID: covidwho-1282654

ABSTRACT

Ebola virus (EBOV) is the cause of sporadic outbreaks of human hemorrhagic disease in Africa, and the best-characterized virus in the filovirus family. The West African epidemic accelerated the clinical development of vaccines and therapeutics, leading to licensure of vaccines and antibody-based therapeutics for human use in recent years. The most widely used vaccine is based on vesicular stomatitis virus (VSV) expressing the EBOV glycoprotein (GP) (VSV-EBOV). Due to its favorable immune cell targeting, this vaccine has also been used as a base vector for the development of second generation VSV-based vaccines against Influenza, Nipah, and Zika viruses. However, in these situations, it may be beneficial if the immunogenicity against EBOV GP is minimized to induce a better protective immune response against the other foreign immunogen. Here, we analyzed if EBOV GP can be truncated to be less immunogenic, yet still able to drive replication of the vaccine vector. We found that the EBOV GP glycan cap and the mucin-like domain are both dispensable for VSV-EBOV replication. The glycan cap, however, appears critical for mediating a protective immune response against lethal EBOV challenge in mice.

8.
Emerg Microbes Infect ; 10(1): 1320-1330, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1266083

ABSTRACT

Ebola virus (EBOV) is a negative single-stranded RNA virus within the Filoviridae family and the causative agent of Ebola virus disease (EVD). Nonhuman primates (NHPs), including cynomolgus and rhesus macaques, are considered the gold standard animal model to interrogate mechanisms of EBOV pathogenesis. However, despite significant genetic similarity (>90%), NHP species display different clinical presentation following EBOV infection, notably a ∼1-2 days delay in disease progression. Consequently, evaluation of therapeutics is generally conducted in rhesus macaques, whereas cynomolgus macaques are utilized to determine efficacy of preventative treatments, notably vaccines. This observation is in line with reported differences in disease severity and host responses between these two NHP following infection with simian varicella virus, influenza A and SARS-CoV-2. However, the molecular underpinnings of these differential outcomes following viral infections remain poorly defined. In this study, we compared published transcriptional profiles obtained from cynomolgus and rhesus macaques infected with the EBOV-Makona Guinea C07 using bivariate and regression analyses to elucidate differences in host responses. We report the presence of a shared core of differentially expressed genes (DEGs) reflecting EVD pathology, including aberrant inflammation, lymphopenia, and coagulopathy. However, the magnitudes of change differed between the two macaque species. These findings suggest that the differential clinical presentation of EVD in these two species is mediated by altered transcriptional responses.


Subject(s)
Gene Expression Regulation/immunology , Hemorrhagic Fever, Ebola/veterinary , Macaca fascicularis , Macaca mulatta , Monkey Diseases/immunology , Transcription, Genetic/immunology , Animals , COVID-19 , Ebolavirus , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/mortality , Humans , Immunity , Monkey Diseases/genetics , Monkey Diseases/mortality , RNA, Viral/metabolism , SARS-CoV-2 , Species Specificity
9.
Antiviral Res ; 186: 104990, 2021 02.
Article in English | MEDLINE | ID: covidwho-1064808

ABSTRACT

The endocytic pathway is a common strategy that several highly pathogenic viruses use to enter into the cell. To demonstrate the usefulness of this pathway as a common target for the development of broad-spectrum antivirals, the inhibitory effect of drug compounds targeting endosomal membrane proteins were investigated. This study entailed direct comparison of drug effectiveness against animal and human pathogenic viruses, namely Ebola (EBOV), African swine fever virus (ASFV), and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A panel of experimental and FDA-approved compounds targeting calcium channels and PIKfyve at the endosomal membrane caused potent reductions of entry up to 90% in SARS-CoV-2 S-protein pseudotyped retrovirus. Similar inhibition was observed against transduced EBOV glycoprotein pseudovirus and ASFV. SARS-CoV-2 infection was potently inhibited by selective estrogen receptor modulators in cells transduced with pseudovirus, among them Raloxifen inhibited ASFV with very low 50% inhibitory concentration. Finally, the mechanism of the inhibition caused by the latter in ASFV infection was analyzed. Overall, this work shows that cellular proteins related to the endocytic pathway can constitute suitable cellular targets for broad range antiviral compounds.


Subject(s)
African Swine Fever Virus/drug effects , Antiviral Agents/pharmacology , Ebolavirus/drug effects , Endosomes/drug effects , SARS-CoV-2/drug effects , Virus Internalization/drug effects , African Swine Fever Virus/physiology , Animals , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Cholesterol/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Ebolavirus/physiology , Endocytosis/drug effects , Endosomes/metabolism , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Raloxifene Hydrochloride/pharmacology , Receptors, Estrogen/metabolism , SARS-CoV-2/physiology , Selective Estrogen Receptor Modulators/pharmacology , Vero Cells
10.
Front Pharmacol ; 11: 574703, 2020.
Article in English | MEDLINE | ID: covidwho-854003

ABSTRACT

Cytokine release syndrome (CRS) is known to be a factor in morbidity and mortality associated with acute viral infections including those caused by filoviruses and coronaviruses. IL-6 has been implicated as a cytokine negatively associated with survival after filovirus and coronavirus infection. However, IL-6 has also been shown to be an important mediator of innate immunity and important for the host response to an acute viral infection. Clinical studies are now being conducted by various researchers to evaluate the possible role of IL-6 blockers to improve outcomes in critically ill patients with CRS. Most of these studies involve the use of anti-IL-6R monoclonal antibodies (α-IL-6R mAbs). We present data showing that direct neutralization of IL-6 with an α-IL-6 mAb in a BALB/c Ebolavirus (EBOV) challenge model produced a statistically significant improvement in outcome compared with controls when administered within the first 24 h of challenge and repeated every 72 h. A similar effect was seen in mice treated with the same dose of α-IL-6R mAb when the treatment was delayed 48 h post-challenge. These data suggest that direct neutralization of IL-6, early during the course of infection, may provide additional clinical benefits to IL-6 receptor blockade alone during treatment of patients with virus-induced CRS.

11.
Ann Transl Med ; 8(7): 500, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-251837

ABSTRACT

This project aims to evaluate the methods and reporting quality of practice guidelines of five different viruses that have caused Public Health Emergencies of International Concern (PHEIC) over 20 past years: the severe acute respiratory syndrome coronavirus (SARS-CoV), Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), Zika virus and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We systematically searched databases, guideline websites and government health agency websites from their inception to February 02, 2020 to extract practice guidelines for SARS-CoV, Ebola virus, MERS-CoV, Zika virus, SARS-CoV-2 and the diseases they caused. The literature was screened independently by four researchers. Then, fifteen researchers evaluated the quality of included guidelines using the AGREE-II (Appraisal of Guidelines for Research and Evaluation II, for methodological quality) instrument and RIGHT (Reporting Items for practice Guidelines in Healthcare, for reporting quality) statement. Finally, a total of 81 guidelines were included, including 21 SARS-CoV guidelines, 11 Ebola virus (EBOV) guidelines, 9 MERS-CoV guidelines, 10 Zika Virus guidelines and 30 SARS-CoV-2 guidelines. The evaluation of the methodological quality indicated that the mean scores of each domain for guidelines of each virus were all below 60%, the scores for guidelines in the domains of "clarity of presentation" being the highest and in the "editorial independence" lowest. The mean reporting rate of each domain for guidelines of each virus was also less than 60%: the reporting rates for the domain "background" were highest, and for the domain "funding and interests" lowest. The methodological and reporting quality of the practice guidelines for SARS-CoV, Ebola virus, MERS-CoV, Zika virus and SARS-CoV-2 guidelines tend to be low. We recommend to follow evidence-based methodology and the RIGHT statement on reporting when developing guidelines.

12.
J Biol Chem ; 295(15): 4773-4779, 2020 04 10.
Article in English | MEDLINE | ID: covidwho-1988

ABSTRACT

Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome-coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome-CoV and Middle East respiratory syndrome (MERS-CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS-CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS-CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position i, the inhibitor caused RNA synthesis arrest at position i + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3'-5' exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Middle East Respiratory Syndrome Coronavirus/enzymology , Nucleic Acid Synthesis Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Virus Replication/drug effects , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/pharmacology , Animals , Antiviral Agents/chemistry , Coronavirus/enzymology , Ebolavirus/enzymology , Gene Expression , Nucleic Acid Synthesis Inhibitors/chemistry , RNA , RNA-Dependent RNA Polymerase/genetics , Sf9 Cells , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL